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AIlItrad-A method is developed for the dynamic stress analysis of alayered composite colltaiDina an
embedded penny-shaped crack and subjected to normal and radial impact. Quantitatively. the time­
dependent stresses near the crack border can be described by the dynamic stress intensity factors. Their
magnitude depends on time. on the material properties of the composite and on the relative size of the
crack compared to the composite local geometry. Results obtained show that. for the same material
properties and geometry of the composite. the dynamic stress intensity factors for an embedded (penny­
shaped) crack reach their peak values within a shorter period of time and with a lower magnitude than the
corresponding dynamic stress factors for a through·crack.

INTRODUCTION

Advanced composite materials are multi-phased nonhomogeneous materials with anisotropic
properties. This complicates the stress analysis for fracture, particularly if the loading is
time-dependent, because the crack geometry involves sharp edges.

An effective approach for finding dynamic stresses in a nonhomogeneous composite con­
taining a through crack has been developed [I] by utilizing both the Laplace and Fourier
transforms. The transient boundary, symmetry and continuity conditions were formulated by
integral representations in terms of the rectangular Cartesian coordinates x and y and the
results for the stress intensity factors determined numerically by solving a standard integral
equation in the Laplace transform plane.The crack geometry was assumed to extend infinitely
in the z-direction or through the side wall of the composite specimen. Many of the failures in
fibrous composites, however, were observed [2] to initiate from embedded mechanical imper­
fections such as air bubbles, voids or cavities. Hence, a more realistic modeling of the actual
flaw geometry would be an embedded crack that has finite dimensions in all directions. This
immediately suggests a three-dimensional elastodynamic crack problem which cannot be solved
effectively by analytical means unless symmetry prevails. One approach for obtaining a solution
is to extend the integral transform formulation for a through crack in rectangular coordinates
[I] to that of an embedded crack in cylindrical polar coordinates. This necessitates the use of
Hankel transforms instead of Fourier transforms.

Although no attempt will be made to analyze the failure of the composite due to impact, the
dynamic stress intensity factors k,(t) and k2(t) can be readily used in a given fracture criterion,
say the strain energy density theory [3], for determining the allowable level of impact load. The
new results can therefore assist the construction of composite materials for establishing impact
tolerance. In this case, failure is assumed to initiate from a damaae zone of material in the
composite that can be approximated by an embedded crack. The time-clependent characteristics
of the stresses for the through and embedded crack geometries are compared and studied for
different elastic properties and dimensions of the composite. In particular. the phenomenon of
elastic waves reflecting from the crack to the interfaces within the composite can be exhibited

tThis work was completed when Dr. Cben was a faculty member at Lehi&h University.
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numerically when their neighboring boundaries are sufficiently close to one another. As time
becomes very large. all of the results in this report reduce to the corresponding static solutions
[4].

AXIAL SYMMETRIC DEFORMATION: PENNY·SHAPED CRACK

Consider a penny-shaped crack of radius a that fies in a layer of material of thickness 2b with
material properties J.LI. Vh PI. This layer is bonded between two media with properties J.L2. V2' P2
as illustrated in Fig. I. With reference to the system of coordinates (x,y.z). the z-axis coincides
with the center of the crack and is normal to the crack situated in the xy-plane. The outer
boundaries of the composite are assumed to be sufficiently far away from the crack such that
the reflected waves will have a negligible influence on the local stresses. Only those impact
loads that produce an axisymmetric wave pattern will be considered.

For an axially symmetric deformation field. material elements are displaced only in the radial
and axial direction and remain unchanged in the B-direction. With reference to the cylindrical
polar coordinates (r,B,z) in Fig. I, the two nonzero displacement components can be expressed
in terms of the wave potentials <Mr,z,!) and "'i(r,z,/) as follows:

(u). ==!!!A_~
r I ar az

(1)

where j == 1 refers to the layer with the crack and j == 2 to the surrounding material. The four
nontrivial stress components are given by

a(acP' iI",) ,(iT) == 2J.L· - ::.':!:l-~ +A\J'cP'
, I J ilr ilr az J J

1 (ocP' 0"") 2«(18) == 2J.L· - ::..Il-::..:!2 + A·\J cPo
I J r or az J J

(2)

in which Ai and J.Li are the Lame constants and \J2 represents the operator

The governing equations can thus be obtained from the equations of motion which yield

(3)

with Clj and C2i being the dilatational and shear wave speeds:
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Fig. I. Penny-shaped crack embedded in a matrix layer under normal and radial impact.

(
A. +21£,)1/2

Cl'=~ t

J Pi (
1£,)112

Cli = ~ . (4)

If the composite body is initially at rest, the Laplace transform of eqns (3) further give

Here, p is the transform variable in the Laplace transform pair;

r(P) ~f/(t) exp ( - pt) dt
o

/(1) =-2
1

•f /*(P) exp (Pt) dp.
", Br

(5)

(6)

The abbreviation Br stands for the Bromwich path of integration. Moreover, since the
composite geometry is symmetrical about the xy~plane, it suffices to consider only the solution
in the upper half~space, z ~O. For the penny-shape crack geometry, the Hankel transform pair
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[5] may be used:
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!"(s) = Jxf (x) I n (sx) dx
n

f(x) = Jsr (s) I n (sx) ds
o

(7)

where In is the nth order Bessel function of the first kind applying eqns (7) to (5), the following
results are obtained:

<p~ (r,z,p) = J[A(I) (s,p) e-"YII' +A(2) (s,p) e"YII']lo<rs)ds

o
(8)

"'~(r,z,p) =J[BW (s,p) e-1'2IZ+B(2) (s,p) e1'2I'] Jdrs) ds
o

for the cracked layer and

<p!(r,z,p) =JC(l)(s,p)e-YI2Z1o(rs)ds

o
(9)

l/I! (r,z,p) = JCm(s,p)e-"Y22zJt(rs)ds

o

for the surrounding material. The quantities 'Yij are given by

(10)

The six unknowns A(I), Am, . .. , Cm are determined from a given set of transient boundary,
symmetry and continuity conditions.

NORMAL IMPACT

Let the penny-shaped crack be subjected to a uniform impact loadt such that the upper and
lower surface will move in the opposite direction. The magnitude of this normal load is (To and,
since it is applied suddenly from t =0 and maintained at a constant value thereafter, the
Heaviside unit step function, H(t), will be used, i.e. - (ToH(t). Making use of eqns (6), the
conditions on the plane z = 0 for r s a and r;:::: a take the forms

(II)
(U~)l(r,o,p) =0; (T~z)1 (r,o,p) =0, r;:::: a.

If the interfaces at z = ± b are bonded perfectly, the stresses and displacements can then be

tThere is no loss in generality in formUlating the problem in terms of a uniform step load. The principle of superposition may
be used to obtain the solution for general loading from a series of step loading solutions as discussed in (I].
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considered to be continuous across these planes, i.e.

(T~')I (r,b,p) = (T~,h (r,b,p)

and

(U~)I (r,b,p) = (u~h (r,b,p)

(U~)I (r,b,p) =(u~h (r,b,p).
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(12)

(13)

Under these considerations, the six functions A(I), A(2), . .. , e(2) may be expressed in terms of a
single unknown A(s,p) as indicated by eqns (AI) in the Appendix.

Fredholm integral equations.
Without going into detail, the function A(s,p) can be obtained from the system of dual integral
equations

JA(s,p) Jo(rs) ds = 0, r ~ a

o

in which PI(s,p) is a known function:

(14)

PI(s,p) =SD./(ll_ Kl) ([i(S2+ 'Yi,)2- S2'Y1I'Y21] [c5(2)- c5(3)e-2('YII+'I'2I)b]

+ S(S2 + 'Yi,) e-I 'YII +'I'2I)b[ 'Y21(c5(1) c5(4)- c5(2) c51)) - 'YII]

+U(S2 + 'rl.)2 +S2'Y1I'Y21][ [c5(4)e-2'1'2lb - c5(1) e-2'Yllb]} (15)

The form of A(s,p) that satisfies eqns (14) can be found from Copson [6]:

(16)

Here, JII2 is the half order Bessel function of the first kind and AH~,p) satisfies the Fredholm
integral equation

whose kernel

I

MU,p) +JA1(1I,P) Md~,1I,P) dll =~
o

(17)

MI(~,1I,P) =ve:qJs [ PI (;, p ) - 1] JII2(S~)lI/2(Sll) ds =~J[PI (;, p) - I] sin (sfl sin (Sll) ds
o 0

(18)

is symmetric in ~ and 11. Figures 2-4 show the numerical results of eqn (17) obtained by varying
Jl.2IJ1.. and alb while PI =P2 and 1'1 =1'2 =0.29 are kept the same for all cases. The function
MU,p) evaluated at the crack border, ~:= 1, governs the contribution of the geometric and
material parameters on kT(P) which represents the Laplace transform of the stress intensity
factor.
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Fig. 2. Plot of A;(I,p) vs cz,/pa for alb =1.0.

Stress intensity factor for normal impact
In order to evaluate kf(P) or k.(t), the stresses in the matrix layer are first expanded in terms of

the local coordinates rl and 8. for small values of rl. The local coordinates (rr, 6,) are related to
(r, 8) in Fig. I as follows:

a +" cos 8, =: , cos 8
(9)

'1 sin 81 = , sin 8.

The leading term in the Laplace transform of the local stresses that possess the l/vr;
singularity is

k*( ) - A10,p) 2 ,r (20)
I P -----uova.

p 1T
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Fig.3. Plot of A;(l,p) vs cz,/pa for Ilz/Il' 0.1.
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Fig. 4. Plot of A;O,p) vs cll!pa for I4JILI = 10.0.

Application of the Laplace inversion theorem yields the dynamic stress field around the crack
border as a function of time. The result is

(0':), (r,,8,.I) ::::~ cos ~I (I + sin ~t sin 3~1) +O(rr>

(Tn)1 (rl.(lJltl):::: .k~cos 8, sin..&cos 381 +0(,;)
v2rl 2 2 2

kM)=20'ova_I_. ( AW.P)eP1dp.
1T 21T1 JBr P

(21)

(22)

Note that eqn (20) is. in fact. the Laplace transform of eqn (22). Hence. the functional
dependence of " and 8, is not affected by the Laplace transformation and can be evaluated
separately. This observation was first made by Sib, Ravera and Embley[7].

Making use of the results for MO.p) in Figs. 2-4, kl(/) in eqn (22) can be found as given in
Figs. 5-7. The dynamic stress intensity factors kl(/) for the penny-shaped crack exhibit an
oscillatory behavior rising quickly to a peak. As time increases. all curves will oscillate and
eventually approach the static value of k,:::: 20'oYa/1T [4]. For a crack diameter to layer
thickness ratio of alb:::: I. the peaks of the k.(t) curve are sensitive to chqes in the shear
moduli ratio 1l2/1l'. Figure S indicates that kl(t) tends to decrease in amplitude as IlJIlI is
reduced from 0.1 to 10.0. The influence of the composite interface on kl(l) is exhibited in Figs.
6-7. When the shear modulus of the surrounding materialll2 is much smaller than the matrix
layer with IJ.h the dynamic crack border stress intensity increases as the crack diameter
becomes large in comparison with the layer thickness.This effect is clearly evidenced in Fig. 6.
As expected. k.(t) increases with decreasing alb when the shear modulus of the cracked layer
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Fig. 5. Dynamic stress intensity factor k,U) for penny-shaped crack with alb = 1.0.

is made smaller the surrounding material, i.e. loLl < 1oL2 as illustrated in Fig. 7. The results of
Embleyand Sih [8] is recovered for the homogeneous case, loLl =1oL2.

RADIAL IMPACT

If the penny-shaped crack is sheared uniformly in the radial direction such that axial
symmetry is preserved, then t/>j(r,z,p) and l/Jj(r,z,p) in eqns (8) and (9) remain valid. Let this
shear of magnitude TO be applied suddenly and hence the surface tractions, - ToH(t), are to be
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~ 1.0
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N 1.2....... 0.5...-
It
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0.4
~2/~,"O.l

VI" Jf2 "0.29
PI"P2
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Fig. 6. Dynamic stress intensity factor k,(I) for penny-shaped crack with 1"211-" = 0.1.
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Fig. 7. Dynamic stress intensity factor kl(t) for penny-shaped crack with 1.1-211.1-1 = 10.0.

specified for 0s r< a with H(t) being the Heaviside unit step function. Laplace transform of
the conitions on the plane z = 0 thus become

(23)

(If, Mr,o,p) =0; (tr: Mr,o,p) =0, r;a: a.

Continuity of the stresses across the interface z =b is satisfied if

(lT~)1 (r,b,p) =(lT~)2 (r,b,p)

(24)

and the same requirement is imposed on the displacements:

(U~)I ("b,p) =(U~h (r,b,p)
(25)

(U~)l (',b,p) =(U~)2 (',b,p).

Integral equations
As in the case of normal impact, the six unknown functions AII)(s,p), A(2)(s,p), ..., CO'(s,p) in

eqns (8) and (9) can be expressed in terms of a siDale unknown B(s,p). Refer to eqns (AS) in the
Appendix. Hence, eqns (24) and (25) are satisfied. The remaining boundary conditions ineqns (23)

O-t1 .oill .bl .JoV 22
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are employed to obtain the system of dual integral equations

JB(s,plJ1(rs)ds=O,r?:a
II

(26)

JSPIi (s,p) B(s,p)JI (rs)ds =- 2 (ITO 2) , r< a
f.ll -Kl P

o

in which

) dl
PlI(s,p =A PI (s,p )

~II

(27)

where Pr(s,p) is already known through eqn (15) while 61(S,P) and 61I(S,P) are given by eqns
(A2) and (A6), respectively.

Solving for B(s,p} [6], it can be shown that

and Mr (~,p) satisfies the Fredholm integral equation of the second kind:

I

Md~,p) +J1\~dT/,p) Mll (~,T/,p)dT/ == ~
o

whose kernel takes the form

Mll (?,T/,p) ==~JS[pu (;,p) - I] J312 (s~) J312 (ST/) ds.
o

(28)

(29)

(30)

Plots of 1\;1 (l,p) as a function of c2t!pa are shown in Figs. 8-10 for different values of f.l21/L1

and afh. The curves show that 1\1 i (l ,p) rises rapidly at first and then levels off.

Stress intensity factor for radial impact
The dynamic crack border stress field corresponding to radial shear can be obtained in the same

way and expressed in terms of the coordinates (rh 6t ) in eqns (19):

Note that k2(1) can be evaluated from

k (I) =Tof"v'~)L1\11 (I,p) e'" d
2 4111 P PDr

once 1\~(1,p) as given by Figs. 8-10 is known.

(31)

(32)
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Fig. 8. Variations of A10.p) with c~"pa for alb =1.0.

The numerical results in Figs. 11-13 for k2(1) as a function of time refer to PI = P2 and
VI;:: 112;:: 0.29. The curve with ILl;:: IL2 is the solution for the homogeneous material treated
previously by Embley and Sih [8]. In general, k2(1) oscillates with time and can be greater or
smaller than the corresponding homogeneous solution depending on whether IL2/IL, < I or
IL2IIL, > I. Figure 11 displays the variations of k2(t) for different values of IL2/ILI while alb is
fixed at unity. The influence of the ratio of crack size with layer thickness is exhibited in Figs. 12
and 13 for ILzlILI =0.1 and IL21ILI =10.0, respectively. These two cases show the opposite effect
which is to be expected.

CONCLUDING REMARKS

The previous discussion has shown that the dynamic stress intensity factors for an embedded
crack can be evaluated analytically by a method similar to that developed for a through crack
[1]. An important consideration is to compare the results for these two crack configurations and

1.6 -
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PI"P,
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rag. 9. Variations of Aj(l,p with C211pG for JIo'/JIoI .. 0.1 and varying G/b.
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Fig. 11. Stress intensity factor K:(t) vs time for a penny-shaped crack with alb = 1.0.

to draw some general conclusions. First of all, the kl(/) or k2(/) factor for the penny-shaped
crack tends to rise more quickly than the through crack, i.e. the peak value of kl(1) or k2(/) is
reached within a shorter period of time. This is because waves emanating from the neighboring
points on the periphery of the penny-shaped crack interfere with each other much earlier as
compared to a line (or plane) crack where the waves must travel from one end to the other
before interference can take place. In general, the maximum value of kl(/) or k2(/) for an
embedded crack is lower than that for a through crack. For example, Fig. 5 gives a peak
value of approximately 1.6 for 1Tk l(/)/2uoYa which corresponds to alb =1.0 and ILIIILI =0.1.
This occurs at clllia "" 1.6 and yields kl(/) "" 1.02 uoYa. The corresponding case of a through
crack [1] renders kl(/) "" 2.40 uoVa and c2ltla::z 3.0. The difference in kl(/) is more than a factor
of two and is more pronounced as the ratio alb is increased. For embedded cracks that are
non-circular in shape, approximate estimates of kl(t) can be made by taking the solution for the
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through crack as an upper limit and that of the circular crack as a lower limit. Refer to {4] for
the case of static loading. It is expected that the same influence of geometry will hold for
dynamic loading.

In the absence ofaxisymmetry, the dynamic stress analysis will become exceedingly difficult
and it will be more feasuble to solve the crack problem numerically. In such cases, the solutions
obtained here can perhaps be used to guide tbe development of numerical procedures.
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APPENDIX: EXPRESSIONS FOR A"'(s,p), ... , (""(s,p)

Normal impact
The functions Alii (s,p), A'l1 (s,p), ... , ("1' (s,p) for the wave potentials in eqns (8) and (9) can be expressed in terms of a

single unknown A(s,p) for normal impact

(AI)

e'Yl2b
CO)(s,p) =S2_'Y 'Y [(s2-'YII'Yn)A(I)e- Yllb + (s2+'Y11'Y22)Ai2leYllb

12 22

- S(1'21 - 1'd B"'e- YlIh + S(1'21 + 1'12) B '2 'e Wh J

e'Y'!2b

("2) (s,p) = 2 [s( 1'12 - 1'1I)AI1, e -Ylib + s( I'll + 1'12) eYllb
s - 1'121'22

+ (S2 - 1'111'12) B'" e-wh +(S2 + 1'211'12) B'2' eYlIhj

in which ~I stands for

(A2)

and 0'",0121 , ••• , 014
' are further expressed in terms of elll, el2l , .•.• elK' as the following:

0111 (s,p) =(elll e'hl _ e'21 e'1 ')f(e lll e'h'- e'2 ' e"')

(A3)

The quantities in eqns (A3) are complicated functions of the materials parameters and transform variables. They are given by
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'"' ( ) - I (2 2 ) IL2 [2 ( ) 1 2 l )( l )]e s,p - -1 S + 'Y21 - (2 ) S 'Y12 'Y21 + 'Y22 -lIs + 'Y22 S + 'Y21'Y12
ILl S - 'Y'2'Y22

m ( ) _ SIL2 [( 2 ) +1 ( l + 2) ( ) Ie S,p - S'Y1l - (' ) 'Y12 S - 'Y1l'Yn 2 S 'Y22 'Yll - 'Y12
ILl r-'Y12'Y22

1M) ( SIL' (' I ' , ) ( ) Ie s,P)=-S'Y11- (2' ) 'Y12(S'+'YI,'Yd-1(S-+'YZl 'Y'I+'Y1l
ILl S - 'Y1l'Yn

Radial impact
For radial impact, A"' (s,p), A(2) (s,p), ... , em (s,p) in eqns (8) and (9) can be expressed in terms of B(s,p) as

where

1107

(A4)

(AS)

(A6)

The remaining functions B(I)(s,p), B(2)(S,p), etc. can be related to B(s,p) through A(l)(s,p) and AIZ/(S,p) since the last four
expressions in cqns (At) for normal impact also apply to radial impact.


